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Given a function f  LQ�� Q �� �� �� and a real number t � �� let Uf t
infgBV�Q� kf � gk
L�I� � tVQg� where the inmum is taken over all functions g  BV
of bounded variation on I
 This and related extremal problems arise in several areas of
mathematics such as interpolation of operators and statistical estimation� as well as in digital
image processing
 Techniques for ndingminimizers g for Uf t� based on variational calculus
and nonlinear partial di�erential equations have been put forward by several authors �DMS
�LOR�� �MS�� �CL
 The main disadvantage of these approaches is that they are numerically
intensive
 On the other hand� it is well
known that more elementary methods based on wavelet
shrinkage solve related extremal problems� for example� the above problem with BV replaced
by the Besov space B
�L�I�� see e
g
 �CDLL
 However� since BV has no simple description
in terms of wavelet coe�cients� it is not clear that minimizers for Uf t� can be realized in
this way
 We shall show in this paper that simple methods based on Haar thresholding
provide near minimizers for Uf t
 Our analysis of this extremal problem brings forward
many interesting relations between Haar decompositions and the space BV
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Nonlinear Approximation and the Space BV�R���

Albert Cohen� Ronald DeVore� Pencho Petrushev and Hong Xu

Abstract� Given a function f � L��Q�� Q �� ��� ��� and a real number t � �� let U�f� t� ��
infg�BV�Q� kf � gk�

L��I�
� tVQ�g�� where the in	mum is taken over all functions g � BV

of bounded variation on I
 This and related extremal problems arise in several areas of
mathematics such as interpolation of operators and statistical estimation� as well as in digital
image processing
 Techniques for 	nding minimizers g for U�f� t� based on variational calculus
and nonlinear partial di�erential equations have been put forward by several authors ��DMS��
�LOR�� �MS�� �CL��
 The main disadvantage of these approaches is that they are numerically
intensive
 On the other hand� it is wellknown that more elementarymethods based on wavelet
shrinkage solve related extremal problems� for example� the above problem with BV replaced
by the Besov space B�

��L��I�� �see e
g
 �CDLL��
 However� since BV has no simple description
in terms of wavelet coe�cients� it is not clear that minimizers for U�f� t� can be realized in
this way
 We shall show in this paper that simple methods based on Haar thresholding
provide near minimizers for U�f� t�
 Our analysis of this extremal problem brings forward
many interesting relations between Haar decompositions and the space BV


�� Introduction�

Nonlinear approximation has recently played an important role in several problems of
image processing including compression� noise removal� and feature extraction� We have
in mind techniques such as wavelet compression �DJL�� wavelet shrinkage or thresholding
�DJKP��� wavelet packets �CW�� and greedy algorithms �MZ� DT�� There has also been an
impressive contribution of techniques based on variational calculus and nonlinear partial
di�erential equations �see e�g� �DMS�� �LOR�� �MS�� �CL�� especially to the problems of
noise removal and image segmentation� The common point between these two approaches
is their ability to adapt to the composite nature of images� edge� textures and smooth
regions should be treated adaptively� a requirement which is certainly not ful	lled by the
classical linear 	ltering techniques�
One problem which plays an important role in the latter approach is the the following

extremal problem introduced in �LOR��
Given a function �image� f de�ned on the unit square� Q �
 ��� ���� and a parameter

t � �� �nd the function g � BV�Q� which attains the in�mum

����� U�f� t� �
 inf
g�BV�Q�

kf � gk�L��Q� � tVQ�g��

Here BV�Q� is the space of functions of bounded variation on Q �see x for the de	nition
of this space� and VQ�f� 
 jf jBV is the associated semi�norm� i�e� the total variation of f �

�This research was supported by the O�ce of Naval Research Contracts N������J����
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In the practice of noise removal� f represents the noisy image and t is usually chosen to be
proportional to the noise level� The minimizer g then appears as a denoised image� The
functional in ����� can also be viewed as a variant of the Mumford and Shah functional
introduced in their celebrated paper �MS� on image processing�
A minimization problem close to ����� is also familiar in the context of interpolation of

linear operators� the expression

���� K�f� t� �
 K�f� t� L��Q��BV�Q�� �
 inf
g�BV�Q�

kf � gkL��Q� � tVQ�g��

called the K�functional of f for the pair �L��Q��BV�Q��� is the basic tool for generating
interpolation spaces between these two spaces by the so�called real method�
Numerical techniques for solving ����� based on partial di�erential equations have been

developed and successfully applied to image processing� The advantage of these techniques
is high performance� Their disadvantage is they are numerically intensive� and require in
practise the approximation of the BV term in U�f� t� by a quadratic term �e�g�

R
�� �

jrf j������ in order to 	nd a solution in reasonable computational time �see �VO� for a
discussion on numerical methods for solving �������
In comparison� wavelet thresholding methods simply amount to the application of mul�

tiscale decomposition and reconstruction algorithms on the image� and of a thresholding
procedure� which can all be performed in O�N� operations� where N is the number of pix�
els in the image� These methods can be made translation invariant by a cyclic averaging
technique introduced in �CD�� which seems to bring signi	cant visual improvement� while
only raising the complexity to O�N logN�� On a more theoretical point of view� thresh�
olding procedures have been proved to be optimal� in the minimax sense of asymptotical
statistics� in various non�parametric contexts where the images are typically modelized by
their regularity in Sobolev and Besov classes �see �DJKP���
A striking remark �see �CDLL�� is that wavelet thresholding also provides the exact

solution to an extremal problem which is very close to ������ namely

����� �U�f� t� �
 inf
g�B�

� �L��Q��
kf � gk�L��Q� � tjgjB�

��L��Q��
�

where the Besov space B�
��L��Q�� is taken in place of the �larger� space BV�Q�� Both

BV�Q� and B�
��L��Q�� are smoothness spaces of order one in L��Q�� e�g� the space BV�Q�

is the same as Lip��� L��Q�� �see �M�� or �DP�� for the de	nition of the Besov spaces�� In
contrast to BV� the B�

��L�� norm has a simple equivalent expression as the �� norm of the
coe�cients in a wavelet basis decomposition f 


P
��� f��� �where � denotes the set of

indices for the wavelet basis�� One can thus use this decomposition to obtain an equivalent
discrete problem

����� �U��f��� t� �
 inf
�g�����

X
���

�jf� � g�j� � tjg�j��

whose solution �obtained by minimizing separately on each index �� is exactly given by a
�soft thresholding� procedure at level t��

����� g� 
 sgn�f��maxf�� jf�j � t�g�



�

The minimization problem ����� can thus be solved �up to a constant related to the equiv�
alence between continuous and discrete norms�� by a simple wavelet�based procedure�
One could argue that the distinction between the two problems ����� and ���� is slight�

However� BV seems more adapted to model real images� since it allows sharp edges �i�e�
discontinuities on a line�� which cannot occur in a bivariate function that belongs to the
smaller space B�

��L��� This fact is con	rmed in the practice of image processing� the
performance of ����� for noise removal� for example� seems slightly better than that of
������ at least in aesthetic terms�
We call a family of functions gt a near minimizer for ����� if

����� kf � gtk�L��Q� � tVQ�gt� � C inf
g�BV�Q�

kf � gk�L��Q� � tVQ�g�

with C an absolute constant �not depending on t or f�� A similar de	nition applies to �����
The question arises whether one could 	nd a near minimizer to ����� and ����� using simple
non�linear approximation techniques such as wavelet thresholding� Note that in contrast
to B�

��L��� we are then allowed to use approximations that have line discontinuities� such
as the multidimensional Haar basis or� more generally� piecewise constant functions� The
main point of this paper is to develop such techniques and to prove that they indeed yield
near minimizers for the problems ����� and �����
Our main result in this paper is to show that either of the extremal problems ������

has a near minimizer taken from certain �non�linear� spaces �N � N � �� whose elements
are piecewise constants that can be described by N parameters� In the case of wavelet
thresholding� the space �N is simply the set of all linear combinations

P
f�H� with at

most N terms and H� the bivariate Haar functions�
In order to prove that a given family �N provides the solution to ����� or ����� we

shall make use of several ingredients� among which are two types of inequalities that are
frequently used in numerical analysis and approximation theory�

�i� A direct or Jackson type estimate

����� inf
g��N

kf � gkL��Q� � CN����jf jBV�Q��

that describes the approximation power of �N for functions in BV�
�ii� An inverse or Bernstein type estimate

����� jf jBV�Q� � CN���kfkL��Q� if f � �N �

that describes the smoothness properties of the approximation spaces �N �
When BV is replaced by B�

��L�� and �N is the set of N�terms linear combination in
a su�ciently smooth wavelet basis� these inequalities reduce to simple considerations on
sequences� Since the BV norm has no simple equivalent expression in terms of the wavelet
coe�cients �it is actually known that BV is nonseparable�� ����� and ����� �in particular
the direct estimate� are by far less obvious� and will require more involved arguments�
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We shall now give a more precise formulation of our results� We shall denote by �wN the
non�linear spaces associated with N�term approximation in the Haar system� i�e�

����� �wN �
 f
X
��E

c�H� � E � �� jEj � Ng�

where jEj denotes the cardinality of the discrete set E �in the case of a continuous set
� of Rd� j�j will stand for its volume�� and where �H����� is the bivariate Haar system
derived from the univariate system of L���� �� by the usual tensor�product construction�
from H� 
 �

�����
and H� �
 �

�������
� �

�������
� one de	nes the multivariate functions

������ He�x� �
 He� �x��H
e��x��� e 
 �e�� e�� � V�

where V is the set consisting of the nonzero vertices of Q� The bivariate Haar system for
L��Q� consists of the constant function � and of all functions

������ He
j�k�x� 
 jHe�jx � k�� e � V� j � �� k �Z� � jQ�

We refer to �D� for a general introduction to wavelet bases�
We shall prove that the wavelet thresholding� which is equivalent to approximation by

the elements �wN � gives a near minimizer to the extremal problems ����� and ���� �x���
However� our proofs are neither direct nor simple� Rather� we prove these results by
considering various types of nonlinear approximation by piecewise constants� Note that
the functions in �wN are piecewise constant taking at most N values�
To describe the other spaces of piecewise constant functions which we shall use in this

paper we introduce the following notation which will be used throughout the paper� If �
is a set of R�� we denote by 	� its characteristic function� and by

����� a��f� 
 j�j��
Z
�

f�

the average of an L��function f on �� By de	nition� a dyadic cube I is the tensor product
of two dyadic intervals� i�e� I 
 I�j� k� l� 
 ��jk� �j�k����� ��j l� �j�l����� We shall
denote by D �
 D�Q� the set of all dyadic cubes contained in Q� and by Dk�Q� the set of
all dyadic cubes in D�Q� with sidelength �k �measure ��k�� We denote by Sk �
 Sk�Q�
the space of piecewise constants on the partition Dk�Q�� This is a linear space spanned by
the functions 	I� I � Dk�Q��
We de	ne the family of non�linear spaces of piecewise constant functions�

������ �cN 
 f
X
I�E

cI	I � E � D� jEj � Ng�

i�e� all linear combinations of at most N characteristic functions of dyadic cubes�
A natural procedure to approximate in �wN is the simple thresholding of wavelet coef�

	cients� In order to obtain approximations in �cN � one can think of di�erent procedures�
The simplest one is based on a quadtree splitting algorithm� given a tolerance � � � and a



�

function f � L��Q�� one builds an adaptive partition of Q into dyadic cubes by splitting
into four subcubes each cube I such that the residual

R�I� �
 kf � aI�f�kL��I��

is larger than �� The procedure is initiated from the unit cube Q� and stops when all
residuals are smaller than �� and f is then approximated by f� �


P
I�P� aI	I� where P�

is the 	nal partition of Q�
The approximation properties of such adaptive algorithms have been studied in �DY��

However� this algorithm does not exploit the full approximation properties of �cN since
it imposes that the cubes involved in the de	nition of f� are disjoint� One can actually
show by simple counterexamples that this procedure does not yield the direct estimate we
desire in proving ����� or ����� i�e� too many cubes could be generated to achieve a certain
accuracy in the approximation of certain BV functions�
A more e�cient procedure should thus not only involve splitting� but also merging

of cubes� which will amount in using non�disjoint cubes in the de	nition of a suitable
approximation� In this paper� we shall introduce a �split and merge� algorithm that
produces an approximation of f based on disjoint partitions of Q into dyadic rings� By
de	nition a dyadic ring is the di�erence between two embedded dyadic cubes� i�e� any set
of the type

������ K �
 I n J� J � I� I� J � D�

We also consider a dyadic cube to be a degenerate case of a dyadic ring for which J is
empty� Throughout this paper� a �cube� will always stand for a dyadic cube� and a �ring�
for a dyadic ring� Our third family of approximation space �rN is the set of all functions
of the form

������ f 

X
��P

c�	��

where P is a set of at most N dyadic rings� that form a partition of Q� i�e� the rings are
disjoint and union to Q� Note that ������ means that 	� 
 	I � 	J so that �rN � �c�N �
We can thus use �rN to prove results on approximation by �cN �
An important point that should be mentioned here is that the nonlinearity of the three

families �wN � �
c
N and �rN � is �controlled� in the sense that they all satisfy

������ �N � �M � �a�M	N��

with a an absolute constant� This is obvious in the case of �wN and �cN � with a 
 �� It can
also be proved for �rN �with a larger value of a��
The outline of our paper is the following�
In x� we de	ne the spaces BV��� for domains � � R� and recall certain basic properties

of these spaces� In x�� we prove inverse estimates of the type ����� for the spaces �wN � �rN
and �cN �
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In order to study the process of approximation for �rN � we prove in x� the projection
error estimate

������ kf � a�kL���� � C�jf jBV����
where C� is independent of the ring �� We then prove in x� the stability estimate
������ j

X
��P

a��f�	�jBV�Q� � C�jf jBV�Q��

where C� does not depend on the partition P of Q into disjoint rings� The uniformity of
C� and C� is ensured by the the controlled shape of a dyadic ring which cannot be very
anisotropic�
In x�� we introduce our algorithm for approximation by the elements of �rN and use

it to prove the Jackson inequality� This algorithm relies on a general result concerning
the existence of partitions of Q into rings which are well balanced with respect to a super�
additive cost function� We prove in x� that this algorithm is also a near best solution to the
extremal problem ����� We anticipate therefore that this algorithm will be useful in image
processing but this will not be addressed in the present paper which mostly concentrates
on the theoretical issues�
In x�� we prove the direct estimate for �Haar� wavelet shrinkage� i�e� approximation by

�wN � and we show in x� that this procedure is stable in BV and provide solutions for the
two extremal problems ����� and ����� It should be pointed out that the results of these
two sections make important use of the results that we establish for �rN � and that so far
we do not know how to prove them in a more direct way�
Finally� we use our results in x�� to identify the interpolation spaces between L��Q�

and BV �Q��
Throughout the paper� we give explicit constants for all important inequalities� Most

of them �in particular �C�� C�� � � � � C
� that appear in the end of the paper�� can probably
be improved using more re	ned arguments�

�� The space BV����
In this section� we shall de	ne for certain domains � � R�� the spaces BV��� of functions

of bounded variation on � and recall some basic properties of this space� While BV���
can be de	ned for general domains� in this paper� we shall primarily be interested in rings
� 
 I n J � where I and J � I are in D�Q��
For a vector 
 � R�� we de	ne the di�erence operator �� in the direction 
 by

���� ���f� x� �
 f�x � 
� � f�x��

Let � be any domain in R�� For functions f de	ned on �� ���f� x� is de	ned whenever
x � ��
�� where ��
� �
 fx � �x� x�
� � �g and �x� x�
� is the line segment connecting
x and x � 
� Note that if � is bounded and 
 is large enough then ��
� is empty� Let
ej � j 
 �� � be the two coordinate vectors in R�� We say that a function f � L���� is in
BV��� if and only if

��� V��f� �
 sup
��h

h��
�X

j��

k�hej �f� ��kL����hej�� 
 lim
h��

�X
j��

k�hej �f� ��kL����hej��



�

is 	nite� Here� the last equality in ��� follows from the fact that k�hej �f� ��kL����hej��
is subadditive �see e�g� Theorem ������ in �HP��� By de	nition� the quantity V��f� is the
variation of f over �� It provides a semi�norm and norm for BV����

���� jf jBV��� �
 V��f�� kfkBV��� �
 jf jBV��� � kfkL�����

Let � 
 �� � �� where �� and �� are disjoint sets� Then for any h � � and j 
 �� �
one has the inclusion ���hej� � ���hej � � ��hej �� Hence� for j 
 �� �

���� k�hej �f� ��kL�����hej�� � k�hej �f� ��kL�����hej�� � k�hej �f� ��kL����hej���

Summing over j and taking the the limit as h tends to �� we obtain

���� V�� �f� � V���f� � V��f��

By induction� the analogue of ���� holds for any 	nite union of disjoint sets�
We recall the L��modulus of continuity ��f� t�� which is de	ned by

���� ��f� t�� �
 sup
j�j�t

k���f� ��kL��������

Here and later jxj �

p
x�� � x�� is the Euclidean metric� For any ring� we have that BV���

is identical with Lip��� L������ where the latter set consists of all functions such that

���� jf j�BV��� �
 sup
t��

t����f� t��

is 	nite� We also have

���� jf j�BV��� � jf jBV��� � jf j�BV����

Indeed� the right inequality in ���� is obvious from the de	nition of the two semi�norms�
The left inequality follows from the fact for any point x � ��
�� 
 
 �
�� 
��� either
�x� x�
�e�� and �x�
�e�� x�
� are both contained in � or �x� x�
�e�� and �x�
�e�� x�
�
are both contained in ��
For a ring � 
 I nJ � we de	ne D��� to be the set of all I � D which are contained in �

and similarly� we de	ne Dk��� the subset of D��� that consists of the cubes of sidelength
�k� If ��k � jJ j� when J is non empty or if ��k � jIj when � 
 I is a cube� we can
de	ne Sk��� to be the restriction of Sk to �� For any f � L����� we de	ne the Pk�f� to
be the orthogonal projection of f onto Sk���� Then�

���� Pk�f� 

X

I�Dk���
aI�f�	I �

It is easy to prove that whenever f � BV���

����� kf � Pk�f�kL���� � �kV��f�
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and

����� V��Pk�f�� � V��f��

For a proof of these results see �L� Chapter �� Lemma ��� for the case when � is a cube
�the same proof also works for rings��
It is also easy to calculate the BV norm of functions S � Sk���� For any set A � R��

let Lk�A� denote the edges L of the cubes I � Dk� �Q� which are contained in A� We also
denote by �o the interior of �� and by JL� L � Lk��o�� the jump in f across L� Then�
�see again �L� Chapter �� Lemma �����

���� V��f� 
 �k
X

L�Lk��o�
jJLj�

�� Inverse estimates�

In the introduction� we have introduced three families of non�linear spaces ��wN � �
c
N

and �rN �� We begin our study of these spaces in this section by proving ����� for any
ring �� We shall obtain speci	c constants in ����� although this is not important for the
theoretical results that follow�
We 	rst treat the space �wN which appears in wavelet thresholding�

Theorem ���� For each f � �wN � we have

����� VQ�f� � �N���kfkL��Q��

Proof� We 	rst observe that any Haar basis function �� �see ������� satis	es

���� VQ���� � � 
 �k��kL� �

Indeed� if the support of �� is a square I of side length h 
 �k� then it takes the values
	h�� on I� We can calculate VQ���� by ����� The jumps across the outer boundary of
I give h���h 
 � and those across the inner boundary give at most h��h 
 �� Thus�
���� is proved�
If f 


P
��E f��� is in �wN � then

����� VQ�f� � �
X
��E

jf�j � �jEj����
X
��E

jf�j����� � �N���kfkL� �

by the Cauchy�Schwarz inequality� �

Remark ���� Using that VQ�f� � �
P

��E jf�j� we also obtain the following variant of the
inverse inequality ������ Let t � � and f 


P
��E f��� be a linear combination of Haar

wavelets such that jf�j � t for all � � E� then

����� jf jBV � �

t
kfk�L� �

We now prove the Bernstein inequality for �rN by a very similar argument�



�

Theorem ���� For each f � �rN � we have

����� VQ�f� � �
p
�p
�
N���kfkL��Q��

Proof� We 	rst prove that if � 
 I n J is any ring contained in Q� then

����� j	�jBV � �
p
�p
�
k	�kL� �

To prove this� let � be the side length of I and h� be the side length of J � Then� k	�k�L��Q� 

����� h��� We consider two cases� In the 	rst case� we assume that J is in the interior of
I� Then necessarily� h � ���� In this case VQ�	�� � ��� ��h 
 ���� � h� where the 	rst
term comes from the jump across the outer boundary and the second the jump across the

inner boundary� Since ��	h��

��h� � �
 � we have veri	ed ����� in this case� In the second case�

we assume that J shares an edge with I� Then VQ�	�� � ���� �h� � ��h 
 ���� � h���

Since ��	h����

��h� � ��� for � � h � ��� ����� follows in this case as well�

If f � �rN � then f 

P

��P f�	� with P a partition of Q into rings� then

����� VQ�f� � �
p
�p
�

X
��P

jf�jk	�kL� �
�
p
�p
�
N���kfkL� �

by the Cauchy�Schwarz inequality� �

We close this section by using ideas from �DP� to prove the Bernstein inequality for �cN �
If E is a 	nite collection of dyadic cubes� then for each I � E we de	ne BI�E� to be the
set of all cubes J that are maximal in I� i�e�� J � I� J � E� and J is not contained in
another cube with these properties� It was shown in Lemma ��� of �DP� that any set E
can be embedded in a set E� with jE�j � �jEj and

����� jBI�E
��j � �� for all I � E��

Theorem ���� For each f � �cN � we have

����� VQ�f� � �p
�
N���kfkL��Q��

Proof� If f � �cN � we can write f 

P

I�E fI	I� where E � D�Q� and jEj � N � Let E�

be a set which contains E� satis	es ������ and such that jE�j � �N � Then� we can also
represent f as

������ f 

X
I�E�

dI	I�
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Figure �

If I � E�� we de	ne I � �
 I n �fJ � J � BI�E��g� The functions 	I�� I � E�� have disjoint
supports and

������ f 

X
I�E�

cI	I��

with cI �

P

J�I�J�E� dJ � We can assume that all 	I� appearing in ������ are nonzero�
For each of these functions� we have a basic inverse estimate

����� VQ�	I�� � ��p
�
k	I�kL� �

The proof of ����� is similar to that of ���� and ����� except that we have to check more
cases� The quotient

VQ�	I��

k	I�kL�



��

takes its largest value for the con	guration in Figure � which gives the constant ��p

� We

leave this veri	cation to the reader�
Using the Cauchy�Schwarz inequality� we 	nd

VQ�f� �
X
I�E�

jcIjVQ�	I��

� ��p
�

X
I�E�

jcIjk	I�kL�

� �p
�
N���

�X
I�E�

jcIj�k	I�k�L�
����



�p
�
N���kfkL��Q�� �

�� Approximation by a constant on a ring�shaped domain�

In this section� we shall give bounds for the L��error of approximation of a BV func�
tion by a constant on a ring�shaped domain� At 	rst� we shall make certain preliminary
constructions which will be used in the proofs of these results as well as those of the next
section�
Let � be a ring contained in Q� � �
 I� n I�� I�� I� � D�Q�� I� � I�� We shall consider

piecewise constant functions in Sk���� We assume that k is large enough that ��k � jI�j
and ��k � jI�j if I� is not empty� We can therefore write jI�j 
 m�

�
��k and jI�j 
 m�

�
��k

with m��m� positive integers and m� � m��
Let Bk��� denote the external layer of boundary cubes for �� i�e� the set of cubes

I � Dk�R�� such that I is not in Dk��� but �I � �� contains a line segment� Let �a� b� be
the lower left vertex of I�� We index each cube I � Dk�I�� by the pair of integers �i� j��
� � i� j �m�� such that �a� b���k�j���� i���� is in I �we have purposefully reversed i
and j in the indexing so that i will now correspond to a row and j to a column�� Boundary
cubes can be indexed in the same way with i� j now allowed to take the values � andm����
Note that� in general� there are two types of boundary cubes� the interior boundary cubes
�which are contained in I�� and the exterior boundary cubes which are outside of I�� If I
is indexed by �i� j�� we say that I is in row i and column j� We say a row i �respectively
column j� is unobstructed if all cubes I � Dk�I�� from row i �respectively column j� are in
Dk����
By an admissible path  for �� we shall mean a piecewise linear path with the following

properties� Each segment of  is parallel to a coordinate axis and connects a center of a
cube I � Dk��� � Bk��� to the center of another cube J � Dk��� � Bk���� Each edge
L � Lk�� � ��� is transversed at most once by  and each edge not in this set is never
transversed by �
For each i 
 �� � � � �m�� there are either two or four boundary cubes in Bk��� which are

in row i� For each distinct pair of these cubes �I� J�� we shall construct an admissible path
i�I� J� which connects I to J as follows�
If there are exactly two such boundary cubes for row i� we take the strictly horizontal

path which connects the center of I to the center of J �
Consider next the case where there are four boundary cubes in row i� The indices of

these cubes are �i� j�� j 
 j�� j�� j�� j� where j� 
 � � j� � j� � j 
 m� � �� Moreover�
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j� � m� and j� j� � m�� Let I and J be two of these boundary cubes with indices �i� j�
and �i� j�� and j � j�� If j 
 j� and j� 
 j�� we take the path i�I� J� to again be the
strictly horizontal path connecting the center of I to the center of J � We proceed similarly
if j 
 j� and j� 
 j�
We now consider the remaining cases� Let j�i� � ���m�� be congruent to i mod m��

Then� the column with index j�i� is unobstructed� Similarly� the column with index
j��i� �
 m� � j�i� � � is unobstructed� Also� for one of the two choices i� �
 i 	m�� the
row with index i� is unobstructed�
If I� J are a pair for which we have not yet constructed i�I� J�� then we construct

this path as the concatenation of the the 	ve segments which connect the centers of the
cubes with the following indices in the speci	ed order� �i� j�� �i� j�i��� �i�� j�i��� �i�� j��i���
�i� j��i��� �i� j��� It follows that i�I� J� is an admissible path�
We shall need one last type of row path that occurs only in the case that row i is

obstructed but there are only two boundary cubes� This case occurs when I� touches the
boundary of I�� Let I be the boundary cube in row i which touches the boundary of I��
We assume that I has index �i� �� �the case when I has index �i�m� � �� is handled in a
symmetric manner�� We let j�i� and i� be as above� We let �I� be the admissible path
which consists of the three segments which connect the centers of the cubes with indices
�i� ��� �i� j�i��� �i�� j�i�� and �i��m� � �� in that order�
We make the analogous construction of paths which connect the boundary cubes in

column j and denote these paths by �j�I� J��
We shall now use these paths to prove the error estimate ������ for rings� Before

proceeding to the proof of ������� we remark that this inequality holds for general Lipschitz
domains �� Indeed� using the known embedding of BV��� into L����� we have

����� kf � akL���� � Ckf � akBV����

for any function f and constant a� Therefore� taking the in	mum over a� we obtain

���� kf � a��f�kL���� � C inf
a�R

kf � akBV��� � C�jf jBV��� 
 C�V��f��

The last inequality in ���� follows for example from elementary results in approximation
�see e�g� Theorem ��� in �DS��� It is to see that the constant C� is invariant by isotropic
scaling of �� but grows by anisotropic �e�g� one directional� scaling� This reveals that C�

strongly depends on the shape of �� Our goal is to directly prove ������ with a constant
C� that is uniform for rings � 
 I� n I��
Let S � Sk��� be a piecewise constant function on � with k such that ��k is less than

jI�j and ��k is less than jI�j in the case where I� is not empty� Given a path � let

����� J�� �

X
L

jJLj�

where the sum is taken over all edges L � Lk��o� which are crossed by � Here and later�
we use the notation Ko to denote the interior of a set K � R��



��

For each i� we de	ne

����� ri �

X
�i

J�i��

where the sum is taken over all the paths i associated to the row index i �recall there are
one or six such paths� and

����� R �


m�X
i��

ri�

Similarly� we de	ne

����� cj �

X
	j

J��j��

where the sum is taken over all the paths �j associated to the column index j and

����� C �


m�X
j��

cj�

Lemma ���� For any ring � and any S � Sk���� we have

����� �k�R � C� � �V��f��

Proof� We shall 	rst estimate how often jJLj� with L a 	xed vertical edge� L � Lk��o��
appears in the sum R � C� Suppose 	rst that L is in an unobstructed row i� Then L
appears exactly once for paths i� The row i is used at most four times for paths i� � with
i 

 i�� The row i is also used at most four times for paths �j � Hence JL appears at most
� times in the sum R�C� Consider next the case when i is obstructed� Then� JL appears
exactly once for paths i and it never appears for any other paths i� or �j� The same
estimate holds for JL when L is a horizontal edge� Thus�

����� �k�R� C� � �
X

L�Lk��o�
�kjJLj 
 �V��f��

where the last equality is given by ����� �

Remark ��� In the case � is a cube� the constant � in ����� can be replaced by ��

Theorem ���� For any ring � 
 I� n I� and any function f � BV���� we have

������ kf � a��f�kL���� � �
p
�V��f�
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Proof� Let us 	rst observe that it is su�cient to prove this estimates for the special case
of functions S � Sk���� Indeed� if this has been shown� then we have
������ kf � a��f�kL� ��� � kf � Pk�f�kL���� � kPk�f� � a��f�kL�����
where Pk is the projector onto Sk���� The 	rst term tends to zero with k and the second
would provide our estimate since a��Pk�f�� 
 a��f� and since by ����� V��Pk�f�� �
V��f� if k is su�ciently large�
Henceforth� we consider f � Sk� with k such that ��k is less than jI�j and ��k is less

than jI�j in the case where I� is not empty� Let pI 
 pi�j denote the value of f on the
cube I with I in row i and column j� �with similar notation for I �� and let � denote the
set of �i� j� such that the cube with index �i� j� is contained in � and let N �
 j�j� Then�
A �
 a��f� 


�
N

P
�i��j���� pi��j� � Therefore�

����� jpi�j �Aj � N�� X
�i��j����

jpi�j � pi��j� j�

We can construct an admissible path  which connects the center of I to the center of
I � using portions of the paths i and �j� � Indeed� it is easy to see from our constructions
there is a path i associated to row i which passes through I and a path �j associated
to column j which passes through j such that i intersects �j � We take  as the shortest
path contained in i � �j which connects the center of I to the center of J � It follows that
jpi�j � pi��j� j does not exceed the sum of the JL crossed by this path� Hence�

������ jpi�j � pi��j� j � ri � cj� �

By a symmetric argument� we obtain that

������ jpi�j � pi��j� j � ri� � cj �

By ������ we obtain

������ jpi�j �Aj � N�� X
�i��j����

�ri � cj�� � ri �
m�C

N
�

and by ������

������ jpi�j �Aj � cj �
m�R

N
�

Hence

jpi�j �Aj� � �ri �
m�C

N
��cj �

m�R

N
� 
 ricj �

m�

N
riR�

m�

N
cjC �

m�
�

N�
RC�

We note that N��k 
 j�j � 
� jI�j 
 

�m
�
�
��k� In other words� m�

� � �
N � Therefore�

summing over i� j we obtain

kS �Ak�L���� 
 ��k
X

�i�j���
jpi�j �Aj� � ��k�RC �

m�
�

N
R� �

m�
�

N
C� �

m�
�

N
RC�

� �

�
��k�R� C�� � �

�
��V��f�

��

where we have used Lemma ���� This proves ������� �

Remark ��� In the case � is a cube� the constant �
p
� in ������ can be replaced by ��
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�� Projections onto piecewise constant functions�

In this section� we shall prove the BV stability of projections onto a space of piecewise
constant functions related to a partition of Q into rings�
We denote by P a partition of Q into a 	nite number of rings� This means that the

elements of P are rings K which are pairwise disjoint and union to Q� For each such
partition P� we de	ne

����� PP�f� �

X
K�P

aK �f�	K �

where we recall that aK�f� is the average of f over K and 	K is the characteristic function
of K�

Theorem ���� For any �nite partition P of Q into rings and any f � BV�Q�� we have

���� VQ�PP �f�� � ��VQ�f��

Proof� Let k be large enough so that for any K � P� K 
 I� n I�� we have jI�j � ��k and
jI�j � ��k if I� is not empty� Then PP �f� 
 PP �Pk�f��� Thus� in view of ������ it is
enough to show that ���� holds for any f � Sk� We consider only such f in the remainder
of this proof�
If L � LK �Q�� we denote by JL �
 JL�f� the jump in f across L and by JL�PP �f�� the

jump in PP�f� across L� For any set R � Q� we de	ne

����� ��f�R� �

X

L�Lk�R�
jJLj�

Fix one set K from P and let f� be obtained from f by rede	ning f to be aK �f� on K�
Note that the jumps in f� are the same as those of f except for those inside K �which will
be � in f�� and those on �K� the boundary of K� We shall prove that

����� ��f�� Q� � ��f�Q� � ���f�K n �K��

Assume for the moment� we have proven ������ Then� repeating successively for each
K � P the process that constructs f� from f � we arrive at

����� ��PP �f�� Q� � ��f�Q� � �
X
K�P

��f�K n �K� � �� � ����f�Q��

Since VQ�f� 
 �k��f�Q�� ����� implies �����
We 	nish the proof by proving ������ We shall use the paths that were constructed in

x�� We 	x a ring K � P and we index the cubes I � Dk�K��Bk�K� as in x�� Let pI 
 pi�j
denote the value of f on I when I has index �i� j�� Let J �L �
 JL�f�� be the jump in f�
across L � Lk�Qo�� We need to estimate J �L for those L contained in the boundary of K�
To each such L� there is an I 
 I�L� � Bk�K� which contains L as one of its sides�
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We let �i� j� denote the index of I� Then� we have

����� jJ �Lj �
�

N

X
�i��j����

jpi�j � pi��j� j�

where as before � denotes the set of �i� j� such that the cube with index �i� j� is contained
in K� and N 
 j�j� Let I � have index �i�� j��� As in the proof of Theorem ���� using a
subpath of one of the i and a subpath of one of the �j� �in the case � � i �m�� or from
i� and �j �in the case � � j � m��� we can construct an admissible path �i� j� i�� j�� for
K which connects the center of I to the center of I �� Let  �i� j� i�� j�� denote the collection
of all of the M � Lk�Q� which intersect this path� Then�

����� jJ �Lj �
�

N

X
�i��j����

X
M���i�j�i��j��

jJM j�

Thus�

�����
X
L�
K

jJ �Lj �
�

N

X
M�Lk�Qo�

nM jJM j�

where nM is the total number of times M appears in all of the sets  �i� j� i�� j��� with �i� j�
the index of a cube in Bk�K� and �i�� j�� the index of a cube in Dk�K�� We shall complete
the proof by showing that
�i� nM 
 �� if M is not contained in Lk�K� � Lk��K��
�ii� nM 
 N � if M � Lk��K��
�iii� nM � �N � if M � Lk�Ko��
Clearly� these three estimates used in ����� prove ������
Now� statement �i� is obvious because all the paths �i� j� i�� j�� are admissible for K�

Statement �ii� is also obvious because JM � M � Lk��K� is crossed only by the paths that
emanate from I�M� and there are exactly N of these �one for each cube I � in Dk�K���
To prove �iii�� consider for example a vertical segment M � Lk�K n �K�� If M is in an
obstructed row� then for each �i�� j��� M will appear in exactly one  �i� j� i�� j��� namely
for one pair �i� j� with i the index of the row which contains M � So for these M � we
have nM 
 N � On the other hand� if M is in an unobstructed row i�� then for each
�i�� j��� M will appear in only one of the  �i�� j� i�� j�� for the two values of j corresponding
to boundary cubes� At the same time� M can appear at most four times in the sets
 �i� j� i�� j��� � � i � m�� i 

 i�� namely for the one possible obstructed row with index i
which is congruent to i� mod m�� Similarly� for each �i�� j��� M can appear at most four
times in the sets  �i� j� i�� j��� � � j � m�� Thus nM � �N in this case� We have proved
�i�iii� and completed the proof of the theorem� �

�� A partition algorithm and a direct estimate for �rN �
In this section� we shall prove the direct estimate ����� for �rN � Our proof is based on

two ingredients�
�i� The projection error inequality ������ for ring�shaped domains that was established in



��

x��
�ii� A general result on the partitioning of Q into rings with respect to a super�additive
function�
The proof of this second result will actually provide a concrete algorithmic procedure

that builds adaptive partitions of Q into rings for the approximation of a given function
f �
If f � L��Q�� we de	ne

����� �rN �f� �
 inf
g��rN

kf � gkL��Q�

which is the error of approximation by the elements of �rn�
In the following� we let ! denote a positive set function de	ned on the algebra A�Q�

generated by the rings K � Q� That is� A�Q� consists of all subsets of Q which can be
formed by 	nite unions and intersections of ringsK � Q and their complements� We make
the following assumptions on !�
�i� ! is super�additive� if K� and K� are disjoint sets in A�Q�� we have

���a� !�K�� � !�K�� � !�K� �K���

�ii� ! applied to cubes of decreasing size goes uniformly to zero� i�e�

���b� lim
k��

sup
K�Dk�Q�

!�K� 
 ��

Note that an immediate consequence of ���a� is that !�K�� � !�K�� when K� � K��
We shall prove a general partitioning result with respect to such functions� In practice�

we shall be interested in applying this result in the case where

����� !�K� 
 !f �K� 
 kf � aK�f�k�L��K��

for f � L��Q�� and also in the case where

����� !�K� 
 VK�f� 
 jf jBV�K��

for f � BV�Q�� It is easy to see that properties �i� and �ii� are satis	ed in both of these
cases �see �Z� for a proof of �ii� for the second example using a slight modi	cation of the
BV norm��
We next make some preliminary remarks which will be useful for stating and proving

our main result �Theorem ���� of this section� Recall that each dyadic cube I has four
children J � these are the dyadic cubes J � I with jJ j 
 jIj�� and one parent� Given a
function ! as above and a parameter � � �� we de	ne T� to be the set of cubes I � D�Q�
such that !�I� � �� The collection of cubes in T� form a tree which means that whenever
I � T� and I 

 Q� then its parent also belongs to T�� We also remark that T� has 	nite
cardinality� due to ���b��
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In what follows� we shall assume that !�Q� 

 � and that � is small enough so that T�
is not empty� In the tree T�� we shall make the distinction between several types of cubes�
�i� The set of �nal cubes F� consists of the elements I � T� with no child in T��
�ii� The set N� of branching cubes consists of the elements I � T� with more than one child
in T��
�iii� The set C� of chaining cubes consists of the elements I � T� with exactly one child in
T��
"From the fact that a branching cube always contains at least two 	nal cubes� one easily

derives

����� jN�j � jF�j � ��

The set C� can be partitioned into maximal chains Cq� That is� C� 
 �nq��Cq� where
each Cq is a sequence of m 
m�q� embedded cubes�

����� Cq 
 �I�� � � � � Im����

where Ik	� is a child of Ik� and where I� �resp� Im��� is not a child �resp� parent� of a
chaining cube�
The last cube Im�� of a chain Cq� always contains exactly one cube Im from T� and this

cube is either a 	nal cube or branching cube� The cube Im is uniquely associated to this
chain� This shows that the number of chains n 
 n��� satis	es

����� n � jN�j� jF�j � � � jF�j � ��

Our next theorem gives our main result of this section� It algorithmically constructs
a partition P� of Q into rings K with !�K� � �� It also describes a second partition �P�
whose sole purpose is to help count the number of rings in P��
Theorem ���� Let � � � be such that T� 

 �� Then� there exist a partition P� of Q into
disjoint rings such that

����� !�K� � � if K � P��

and a set �P� 
 �P�
� � �P�

� of pairwise disjoint sets K which are cubes �in the case K � �P�
� �

or rings �in the case K � �P�
� � such that

����� !�K� � �� if K � �P��

and

������ jP�j � �j �P�
� j� �j �P�

� j � �j �P�j�

Proof� We de	ne P� 
 P�
� � P�

� � P
� � with

�i� P�
� � all children J of the 	nal cubes I � F��

�ii� P�
� � the children J of the branching cubes I � N�� such that J �� T��



��

�iii� P
� � rings and cubes obtained from the chains of T� by an algorithm that we now

describe�
If Cq 
 �I�� � � � � Im��� is a maximal chain �� � q � n�� and Im is as above� then we

associate a chain ring Kq 
 I� n Im to each chain Cq� Note that

������ P�
� � P�

� � fKq � q 
 �� � � � � ng

is a partition of the cube Q� We next partition each chain ring Kq� q 
 �� � � � � n� according
to

����� Kq 
 �Ij� n Ij�� � �Ij� n Ij�� � � � � � �Ijp�� n Ijp ��

where � 
 j� � j� � � � � � jp 
 m �p 
 p�q�� are uniquely de	ned by the following
recursion algorithm� assuming that jk is de	ned� and that jk � m� we choose jk	� as
follows�
�i� if !�Ijk n Im� � �� then jk	� �
m� i�e� p �
 k � � and the algorithm terminates�
�ii� if !�Ijk n Ijk	�� � �� then jk	� �
 jk � ��
�iii� if neither �i� or �ii� apply� then jk	� is chosen such that !�Ijk n Ijk��� � � and
!�Ijk n Ijk��	�� � �� In other words� jk	� is the largest j � jk such that !�Ijk n Ij� � ��

We can now de	ne the set P
� � For each chain ring Kq� q 
 �� � � � � n� we include in P

� �
�i� all rings Ijk n Ijk�� such that !�Ijk n Ijk�� � � �� �ii� the children of Ijk �J�jk � J

�
jk
� Jjk �

that di�er from Ijk�� � for all k such that !�Ijk n Ijk��� � � �in this case jk	� 
 jk � �� i�e�
Ijk�� is a child of Ijk�� Note that the cubes �J

�
jk
� J�jk � J


jk
� are not in T��

Because of ������� P� is a partition which clearly satis	es ������
Next� we de	ne �P� �
 �P�

� � �P�
� � where

�i� �P�
� is the set of all of the 	nal cubes of T��

�ii� �P�
� is a set of rings constructed by an algorithm that we now describe�

For each chain ring Kq� q 
 �� � � � � n� we recall its decomposition according to Kq 

�Ij� n Ij�� � � � � � �Ijp�� n Ijp �� and we construct a new decomposition

������ Kq 
 �Is� n Is�� � �Is� n Is�� � � � � � �Isr�� n Isr��

where � 
 s� � s� � � � � � sr 
 m �r 
 r�q�� constitute a subset of �j�� � � � � jp� uniquely
de	ned by the following recursion algorithm� assuming sk 
 jl � m is de	ned�
�i� if jl	� 
 m� we take sk	� �
m and r �
 k � � and terminate the algorithm�
�ii� if jl	� � m� and if !�Ijl n Ijl��� � �� we take sk	� 
 jl	�� In the case that jl	� 
 m�
we terminate the algorithm�
�iii� if jl	� � m� and if !�Ijl n Ijl��� � �� we take sk	� 
 jl	��

For each chain ring Kq� q 
 �� � � � � n� we then include in �P�
� the rings Isk n Isk���

k 
 �� � � � � r � � for which we have !�Isk n Isk��� � � �by the construction of P
� � and we

also include the last ring Isr�� n Isr only if it satis	es !�Isr�� n Isr� � �� This means that
we do not include any ring from the chain ring Kq if !�Kq� � ��
We now claim that

������ jP
� j � �j �P�

� j� n � �j �P�
� j� jF�j � � 
 �j �P�

� j� j �P�
� j � ��
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Indeed� each ring Isk n Isk�� of �P�
� contains �as subsets� at most three rings of P� and in

each chain Cq� q 
 �� � � � � n� at most one ring of P
� is not contained in some element of �P�

� �
Finally� we prove the estimate ������� First� we clearly have

������ jP�
� j � �j �P�

� j
and

������ jP�
� j � jN�j � �jF�j � �� 
 �j �P�

� j � ���

Using these last two estimates with ������� we obtain

������ jP�j � �j �P�
� j� �j �P�

� j � � � �j �P�
� j� �j �P�

� j � �j �P�j�
This proves ������ and completes the proof of the theorem� �

We shall now use Theorem ��� to prove a direct estimate for approximation by the
elements of �rn� To do so� we 	x f � L��Q� which is not constant and we take for ! the
L��error function de	ned by ������ For each � � �� the algorithm described in the proof of
Theorem ��� gives a partition P� 
 P��f� adapted to f � We then consider the piecewise
constant approximation

������ A�f �
 PP�f�

where PP� is de	ned by ������

Theorem ���� If f � BV�Q� is not constant and if � � �� then the algorithm of Theorem
���� with ! given by ������ produces a partition P� that satis�es

������ jP�j � Mp
�
VQ�f�� M �
 ��

p
��

and an approximation A�fthat satis�es

����� kf �A�fk�L��Q� �M
p
�VQ�f��

Consequently� one has the Jackson estimate

����� �rN �f� �MN����VQ�f��

Proof� We consider the set �P� with the properties indicated in the statement of Theorem
���� Using the error estimate ������ with constant �

p
� for rings and � for cubes �see

Remark ��� together with ������ we obtain
p
�jP�j �

p
���j �P�

� j� �j �P�
� j�

� �
X
K� �P��

�!�K����� � �
X
K� �P��

�!�K�����

� �
X
K� �P��

VK�f� � ��
p
�
X
K� �P��

VK�f�

� ��
p
�
X
K� �P�

VK�f� � ��
p
�VQ�f��



��

Dividing by
p
�� we obtain �������

The approximation error ������ is then obtained from

kf �A�fk�L��Q� 

X
K�P�

!�K� � jP�j��

and ������� If we take
p
� �
 MVQ�f�

N � then ������ and ����� imply ������ �

We can also obtain ����� by using the function !�K� 
 VK�f�� We now denote by
P��f� the resulting partition and A��f �
 PP��f�f the resulting partition when the tolerance
is chosen as ��

Theorem ���� If f � BV�Q�� VQ�f� 

 �� N � � and � �
 �N��VQ�f�� then the
algorithm of Theorem ���� with ! given by ������ produces a partition P� that satis�es

���� jP�j � N

and an approximation A��f that satis�es

����� kf �A��fkL��Q� � ��
p
�N����VQ�f��

Proof� The proof is similar to the previous theorem� We consider the sets P� and �P� of
Theorem ���� Using ����� and ������� we have

�jP�j � ��j �P�j � �
X
K� �P�

!�K� 
 �
X
K� �P�

VK�f� � �VQ�f��

which gives �����
We use the error estimate ������ and ���� to obtain

kf �A��fk�L��Q� 

X
K�P�

kf � aK �f�k�L��K� � ��
p
���

X
K�P�

VK �f�
�

� ��
p
���jP�j�� � ���

p
���N�� VQ�f�

��

which proves ����� �

We close this section with the following simple remark about existence of best approxi�
mants from �rn�

Lemma ���� For each f � L��Q� and N � � there exists g � �rN such that

kf � gkL��Q� 
 �rN �f��

Proof� By the de	nition of �rN �f� �see ������� there exist g�� g�� � � � such that gj � �rN and

kf � gjkL��Q� � �rN �f� � j���
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Let Pj �jPj j 
 N� be the partition for gj and furthermore let Kj
m 
 Ijm n J jm � Pj� m 


�� � � � � �N � be the rings of Pj with the indices selected such that jKj
� j � jKj

� j � � � � � jKj
N j�

By selecting a subsequence from �gj�� we can 	nd an � � � and an N� � N such that
jKj

mj � �� � � m � N�� j 
 �� � � � � � and jKj
mj � �� j �� N� � m � N � It follows that

for each m� either the jIjmj � � for all j or jIjmj � �� j �� A similar statement applies
to the J jm� Since there are only a 	nite number of dyadic cubes with measure � �� by
again extracting a subsequence� we can assume that for each m� either Ijm does not change
with j or jIjmj � �� A similar statement applies to the J jm�

It follows that there exist disjoint rings K�
m� m 
 �� � � � �N � such that jKj

i nK�
i j� jK�

i n
Kj
i j � �� j � and K�

m 
 �� N� � m � N � It is now easy to see that kg� gjkL��Q� � ��
j �� for

g �


N�X
m��

aK�

m
�K�

m
�

Therefore� g satis	es the conclusions of the theorem� �

�� Minimization of the K�functional by piecewise constant approximation�

In this section� we shall use the Jackson and Bernstein estimates that we have proved
for �rN to show that a near minimizer for the problem ����� i�e� the K�functional� can be
taken from some space �rN � We shall also show how the algorithm of the previous section
can be used to 	nd a near minimizer�
We begin with the following simple result�

Theorem ���� For each f � L��Q� and N � �� and for each � � �� there exists a function
h � �rN such that

����� kf � hkL��Q� �N����VQ�h� � �� � ����
p
�K�f�N������

Proof� If K�f�N����� 
 � then f is constant and ����� follows by taking h 
 f � If
K�f�N����� 

 � and � � �� let g � BV�Q� satisfy

���� kf � gkL��Q� �N����VQ�g� � �� � ��K�f�N������

Then� according to ����� of Theorem ��� for each N � there exists a function gN � �rN
such that

����� kg � gNkL� � ��
p
�N���� VQ�g��

We take h �
 gN so that

�����

kf � hkL��Q� � kf � gkL��Q� � kg � hkL��Q�
� kf � gkL��Q� � ��

p
�N���� VQ�g�

� ��
p
��� � ��K�f�N������



��

We can estimate the variation of h by Theorem ���� Since h 
 PPg with P the partition
for h� this gives

����� VQ�h� � ��VQ�g� � ���� � ��N���K�f�N������

Then� ����� together with ����� proves the theorem� �

We say that an element g � �rM is a near best approximation to f � L��Q� �with
parameters a � �� and N �M� if

����� kf � gkL��Q� � a�rN �f��

We next show that any such near best approximation is a near minimizer for �����

Corollary ���� If f � L��Q� and g � �rN is a near best approximation with parameter
a� then g satis�es

����� kf � gkL��Q� �N����VQ�g� � C�aK�f�N������

with C� � ��� � ��
p
��

Proof� Let h � �rN be the function of Theorem ���� Then�

����� kf � gkL��Q� � a�rN �f� � akf � hkL��Q��

Also� since g � h � �c�N � from the Bernstein estimate ������ we conclude that

N����VQ�g� � N����VQ�h� �N����VQ�g � h� � N����VQ�h� �
��p
�
kg � hkL��Q�

� N����VQ�h� �
��p
�
�kf � gkL��Q� � kf � hkL��Q��

� N����VQ�h� �
��p
�
�� � a�kf � hkL��Q��

Combining this with ����� gives that the left side of ����� does not exceed

�a�
��p
�
���a��kf�hkL��Q��N����VQ�h� � �a�

��p
�
���a���kf�hkL��Q��N����VQ�h���

We now use ���� to arrive at ������ �

While Theorem ��� and Corollary ��� both provide near minimizers of ���� they are not
of practical interest since they are not constructive� Yet� they show that a near minimizer
for ���� can be taken from �rN when N is chosen so that N���� has the same order of
magnitude as t�
We shall use the remainder of this section to prove that a near minimizer can also be

obtained by applying the algorithm of the previous section to the function f � Recall that
this algorithm is controlled by the parameter � � �� by decreasing �� we increase the number
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of rings in the partition P� and we decrease the approximation error kf �A�fkL��Q�� We
thus have A�f � �rN with N 
 N��� increasing as � goes to zero� In practice� we would
like to directly control the number of rings� This leads to the following question� given
N � �� can we 	nd ��N� such that jP�j 
 N � or equivalently does the function N��� reach
all possible values of N � N # Strictly speaking� the answer to this question is negative�
However� we can circumvent this di�culty as we shall now describe�
For a given f � and a given N � N � we de	ne

����� ��N� �
 minf� � � � jP�j � Ng�

������ P�N 
 P��N��

and

������ �ANf 
 A��N�f 
 PP�

N
f�

If ��N� � �� the minimum is attained in ������ Indeed� the construction of T�� P� and
A�f described in the previous section ensures that� for any given � � �� there exists �� � �
small enough so that T�	s 
 T�� P�	s 
 P� and A�	sf 
 A�f � for all � � s � ���
If ��N� 
 �� then from Lemma ���� f � �rN � We can therefore apply the algorithm with

� 
 � since the tree T� will be 	nite� With this choice� the algorithm gives A�f 
 f and
therefore �ANf 
 f as well�
In order to prove that �ANf is a near minimizer for the K�functional� we 	rst need two

lemmas that will be used to compare the partition PN produced by the algorithm and the
partition that is associated to the element g � �N which is a known minimizer�

Lemma ���� If P is a �nite set of pairwise disjoint rings and P � a partition of Q into a
�nite number of rings� then for each K � � P �� there are at most two sets K � P such that
K �K � 

 � but K is not contained in K ��

Proof� Let K � 
 I � n J � where J � � I � and J � may possibly be empty� If K 
 I n J is in P
and K �K � 

 �� then I � I � 

 �� Hence either I � I � or I � � I� We shall show there is at
most one K of each of these types that intersects K � but is not contained in K ��

�i� Case �� I � � I� Suppose that there were two sets K� 
 I� n J� and K� 
 I� n J�
from P with I � � I�� I�� Then� obviously I� � I� 

 � and hence without loss of generality
I � � I� � I�� For K� and K� to be disjoint �as they must be since both are in P� we must
have I� � J�� But this means K� does not intersect K �� which is a contradiction� Thus�
we have shown there is only one set K of this type�
�ii� Case � I � I �� Suppose again that there were two sets K� 
 I� n J� and K� 
 I� n J�
from P with I � � I�� I�� Then� Ii�J �� i 
 �� � since otherwiseKi � K �� Hence� J � � I�� I��
Obviously� I��I� 

 � and hence without loss of generality I� � I� � I �� SinceK��K� 
 ��
we have

J� � I� � J� � I� � I �

Since J � � I� � J�� this is a contradiction since it implies that K� � K �� �



��

Lemma ���� If P is a �nite set of pairwise disjoint rings and P � a partition of Q into a
�nite number of rings� and if jP �j � N and jPj � N � then the subset P� of all K � P
contained in some K � � P � satis�es jP�j � N �

Proof� Let denote by P� the set of all K � P that are not contained in any K � � P �� and
by P the set of K � � P � such that there exist K � P� having a non�empty intersection
with K ��
By the previous lemma� each K � � P is associated with at most two K � P� such that

K and K � are not disjoint� On the other hand� each K � P� is associated to at least two
K � � P such that K and K � are not disjoint� We thus have necessarily

jP�j � jPj � jP �j � N�

so that jP�j 
 jPj � jP�j � N �N 
 N� �

We are now ready to prove the main result of this section�

Theorem ���� Let f � L��Q� and N � � be an integer and M �
 ��N � The function
�AMf 
 A��M�f is a near best approximation to f in the sense of ����� and satis�es

����� kf � �AMfkL��Q� �N����VQ� �AMf� � C ��K�f�N������

with C �� 
 �C� and C� the constant of Corollary ����

Proof� We consider 	rst the case that � �
 ��M� � �� Let g be a best approximation to
f from �rN and P be the partition associated to g� Fix an arbitrary � � � � � and let
�P 
 �P� be the partition of Theorem ���� Then� using the fact that � � � together with

Theorem ���� we 	nd M � jP��f�j � �j �Pj� Hence j �Pj � N and we can apply Lemma ��

to 	nd a set P� � �P with jP�j � N and each element K � P� is contained in some ring
of P� It follows that

N� �
X
K�P�

kf � aK �f�k�L��K� � kf � gk�L��Q� 
 �rN �f�
��

Since � � � is arbitrary� we have
N� � �rN �f�

��

Therefore�

kf � �AMfk�L��Q� 

X
K�P�

!�K� �M� � ���rN �f�
��

Thus �AMf is a near best approximation to f with parameter a 
 � and ����� follows
from Corollary ����
In the second case� where ��M� 
 �� we have �AMf 
 A�f 
 f and f � �rM � The left

side of ����� does not exceed N���� VQ�f�� Let h be the function of Theorem ���� Since
f � h � �c��N	M� 
 �c�N � we have from the Bernstein inequality �����

kf�hkL��Q��N����VQ�h� �
p
�

�
p
��
N����VQ�f�h��N����VQ�h� �

p
�

�
p
��
N����VQ�f��
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Hence� the left side of ����� does not exceed

�
p
��p
�

�kf � hkL��Q� �N����VQ�h��

and the proof is completed by invoking inequality ������ �

	� Direct estimates for Haar thresholding�

In this section� we 	x a function f in BV and show that its Haar coe�cients are in
weak ��� That is� we shall show that when the Haar coe�cients are put in decreasing
order according to the absolute value of their size� then the n�th rearranged coe�cient is
in absolute value less than Cjf jBV�n� with the C an absolute constant� We shall see that
this also yields the Jackson estimate ����� for �wN �
In the next section� we shall then use this result to show that the extremal problems

����� and ���� have near minimizers which can be obtained by wavelet thresholding of the
coe�cients with respect to the Haar basis�
Associated to each dyadic cube I 
 ��jk�� �j�k� � ��� � ��jk�� �j �k� � ���� there

are three Haar coe�cients cej�k 
 hf�He
j�ki� e � V � k 
 �k�� k�� with V the nonzero vertices

of the square Q 
 ��� ��� �see ���������� In this section as well as in x�� we shall denote
any of these by cI 
 cI�f� and the corresponding Haar function by HI � when we state a
property about cI � we mean any of these three coe�cients and similarly for HI �
We shall assume without loss of generality that f has mean value zero so that the

coe�cient of 	Q is zero� We shall denote by �n�f� the the n�th largest of the absolute
values of the Haar coe�cients ceI of H

e
I � I � D�Q�� e � V �

We begin with the following well�known lemma�

Lemma 	��� If f � BV �Q� and � � �� then there exists a continuous function f� which
is piecewise continuously di�erentiable on Q such that

����� kf � f�kL��Q� � �

and

���� VQ�f�� � VQ�f��

Proof� This can be proved in many ways by molli	cation� for example using Steklov aver�
ages� We shall prove this by using piecewise bilinear interpolants� We recall �see ������that

����� VQ�Pkf� � VQ�f��

where Pk is the projector onto Sk� Since kf �PkfkL��Q� goes to zero as k tends to in	nity�
it is su�cient to prove the result assuming that f is in Sk�
For such an f � and � � � � �k��� we de	ne a tensor product grid

�����  � �
  �� �  ��



��

where the univariate grid  �� is de	ned by

�����  �� �
 f�� �g � f�kn� � � n 
 �� � � � � k � �g � f�kn� � � n 
 �� � � � � kg�

The f is well de	ned at each point in  �� Let f� be the the function which is piecewise
bilinear relative to  � and interpolates f at each grid point in  �� That is f� is the unique
continuous function� which is piecewise bilinear �i�e� of the form a� bx� cy�dxy� on each
rectangular patch de	ned by  � and equal to f on  ��
One easily checks that by construction�

����� VQ�f�� � VQ�f��

On the other hand� it is clear that f� tends to f in L��Q� as � goes to zero� �

In view of Lemma ���� in going further� we can assume without loss of generality that
f is continuous and piecewise continuously di�erentiable on Q� Then�

����� VK�f� 


Z
K

�jfx� j� jfx�j��

for any ring K� Therefore� V�K� �
 VK�f� is set additive on rings� i�e� V�K� � K�� 

V�K�� � V�K�� for any two disjoint rings K� and K��

Theorem 	��� For each f � BV�Q� and each n � �� we have

����� �n�f� � C�
VQ�f�

n

with C� 
 ��C �� and C �� �
 ��
p
� � �

p
��

Proof� We can assume that f is continuous and piecewise continuously di�erentiable on
Q� We can also assume that VQ�f� 
 � since the general case then follows by scaling� We
shall show that there is a set �n � D such that

�i� j�nj � � � n� n 
 �� � � � � �
�ii� jcIj � C ��

�n� I �� �n�
where in �ii�� cI is any of the three Haar coe�cients associated to I� It is easy to see that
this implies ������
We shall use constructions of trees similar to that in x�� We shall also use the abbreviated

notation V�S� �
 VS�f� for any set S in the algebra of rings� For each m 
 �� � � � � � let
Tm denote the collection of all cubes I � D for which V�I� � �m� The cubes in Tm form
a tree� Note also that the tree Tm is contained in the tree Tm	� and we can obtain Tm	�

from Tm by growing Tm�
We shall give each cube I � D an index m�I� as follows� We consider the four children

of Ji � I� i 
 �� � �� �� We can write V�Ji� 
 �mi	�i � where mi is a nonnegative integer
�or mi 
� and � � �i � �� We de	ne m�I� as the second smallest of the four numbers
mi� Another way to describe m�I� �when it is 	nite� is that it is the smallest integer m
such that I has at least two of its children in Tm� Note also that if I has index m then
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I � Tm�� and I has at least two children in Tm� We have remarked in x� that for any tree
the number of branching cubes �i�e� cubes with at least two children in the tree� does not
exceed the number of 	nal cubes� Since the 	nal leaves of Tm are disjoint and on each 	nal
cube I� V�I� � �m� it follows that there are at most m cubes I in D with index m�
We shall also de	ne a distance between two dyadic cubes J � I� This distance is the

di�erence of the dyadic levels of J and I� i�e�

d�I� J� 

�


�log� jIj � log� jJ j��

We 	x n � � and de	ne for all � � m � n the set Am consisting of the cubes I in Tn
which contain a cube J with index m 
 m�J� which satis	es d�I� J� � �n�m�� We thus
have

����� jAmj � ��n �m� � ��m� m 
 �� �� � � � � n�

De	ning �n �
 �nm��Am� it follows that

������ j�nj �
nX

m��

��n�m� � ��m � � � n � ��

so that �i� is satis	ed�
To prove �ii�� let I � D be a cube not in �n� We consider two cases� The 	rst case is

when I �� Tn� In this case V�I� � �n� Let �as before� aI �
 aI�f� be the average of f on
I� By Remark ��� we have for any of the three coe�cients cI �

������ jcIj � j
Z
I

�f�x� � aI�HI �x� dxj � kf � aIkL��I� � V �I� � �n�

Hence� we have veri	ed �ii� in this case�
Consider now the remaining case when I � Tn� We de	ne a chain of cubes I 
 I� �

I� � � � � � Ir as follows� given that Ij has been de	ned� we de	ne Ij	� as the child of Ij in
Tn on which f has largest variation� The chain terminates when Ir is a 	nal leave in Tn�
Let Kj �
 Ij n Ij	�� j 
 �� � � � � r � �� and Kr �
 Ir� The three children J di�erent from

Ij	� all satisfy V�J� � �m�Ij�	�� It follows from the additivity of V that

����� V�Kj � � � � �m�Ij�� j 
 �� � � � � r � ��

We can now estimate any of the three Haar coe�cients cI as follows� We de	ne

������ g �

rX

j��

aKj
	Kj

�

where

������ aKj
�


�

jKj j
Z
Kj

f�x� dx�



��

We let HI denote the Haar functions associated to I and cI � Then�

jcI j 

����
Z
I�

f�x�HI �x� dx

����
� jI�j����

Z
I�

jf�x� � g�x�j dx �
����
Z
I�

g�x�HI �x� dx

����

� �� � ���

We can estimate �� by using Theorem ��� and the Cauchy�Schwarz inequality� This gives

�� � jI�j����
rX

j��

kf � gkL��Kj� � jI�j����
rX

j��

kf � gkL��Kj�jKj j���

� �
p
�jI�j����

rX
j��

V�Kj�jKj j��� � �
p
�

rX
j��

�j V�Kj ��

We now show a similar estimate for ��� Since g is a constant on each ring Kj we get

�� � jI�j����
Z
I�

jg�x�� aK�
j dx 
 jI�j����

rX
j��

Z
Kj

jg�x�� aK�
j dx


 jI�j����
rX

j��

jaKj
� aK�

jjKj j � jI�j����
rX

j��

jKj j
jX

���

jaK�
� aK���

j�

We now change the order of summation to 	nd

�� � jI�j����
rX

���

jaK�
� aK���

j
rX

j��

jKj j � jI�j����
rX

���

jaK�
� aK���

jjI�j�

For each 
� the set K �
 K� �K��� is a ring and if a is the average of f over K� then

jaK�
� aK���

j � jaK�
� aj� jaK���

� aj
� �

jK�j
Z
K�

jf�x� � aj dx � �

jK���j
Z
K���

jf�x� � aj dx

� �

jK�j
Z
K

jf�x� � aj dx

� jKj���jK�j��kf � akL��K� � �
p
�
p
�jK�j����V�K��

Since jI�j����jK�j����jI�j � �p

��� we obtain

������ �� � �
p
�

rX
���

�V �K�� � V �K����� ���
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This together with the estimate of �� shows that

������ jcIj � ���
p
� � �

p
��

rX
j��

�jV �Kj� 


nX
k��

Sk�

where Sk consists of that portion of the sum on the right side of ������ corresponding to
the terms for which m�Ij� 
 k� Then� as we have shown earlier� V �Kj � � � � �k for each
such j� Also� Ij is at a distance � �n� k� from I because of the de	nition of Ak and �n�
Hence�

������ Sk � ����
p
� � ��

p
��

�X
����n�k�	�

���k 
 ����
p
� � ��

p
����n	k�

We now return to ������ to 	nd that

������ jcIj � ����
p
� � ��

p
��

nX
k��

��n	k � ���
p
� � �

p
���n�

Thus� we have provided the desired estimate for these I as well� �

Theorem ��� immediately yields a direct estimate for Haar thresholding� For this� we
de	ne two nonlinear operators associated to the Haar decomposition� Let f have mean
value zero on Q and f 


P
ceIH

e
I � We de	ne for � � �

������ H�f 

X
jce
I
j��

ceIH
e
I �

the thresholding of f at level �� and for each positive integer N

����� GNf 

X

�I�e��EN�f�
ceIH

e
I �

the best approximation of f from �wN � the set EN�f� contains the indices of the N largest
Haar coe�cients ceI of f � In the case of ties in the size of the coe�cients we make an
arbitrary assignment to the set EN �f� in order to remove the ambiguity�

Theorem 	��� If f � BV has mean value zero on Q� we have

����� kf �H�fkL��Q� � C���VQ�f��
����

and

���� inf
g��w

N

kf � gkL��Q� 
 kf � GNfkL��Q� � CN
���� VQ�f��



��

with C� 
 
p
C� and C 
 C� with C� the constant of Theorem ����

Proof� If � � VQ�f�� then ������ and ����� follow trivially from the embedding theorem
�Theorem ��� and Remark ���� We can therefore assume VQ�f� � � in going further� For
each n� let �n �
 �n�f� denote the n�th largest Haar coe�cient of f in absolute value and
for each k 
 �� �� � � � � let �k �
 fn � �n � �k�g� We then have

�����

kf �H�fk�L��Q� 

X
n���

��n 

X
k��

X
n��kn�k��

��n

� ��
X
k��

��kj�k n �k	�j�

For each n � �k n�k	�� we have �n � �k��� and hence from Theorem ���� j�k n�k	�j �
C�VQ�f�

k	���� Using this in ����� we arrive at ������
For ����� we have from Theorem ����

kf � GNfk�L��Q� 

X

n�N	�

��n � C�
� VQ�f�

�
X

n�N	�

n�� � C�
� VQ�f�

�N��� �


� Minimization of the K and U�functionals by Haar thresholding�

We shall now show that Haar thresholding provides near minimizers for ����� and �����
For this� we shall thus prove a stability result concerning the nonlinear operators that we
have introduced in the previous section�

Theorem 
��� The operators GN and H� satisfy for all � � �� N � � and f � BV�Q��

����� VQ�GNf� � C�VQ�f��

and

���� VQ�H�f� � C�VQ�f��

with C� 
 �� � �
p
���

p
� � C� and C the constant of Theorem ��	�

Proof� Clearly� it su�ces to prove ����� since H�f 
 GNf for some N 
 N���� Let g be a
best approximation to f from �rN � We can write g 
 PPf with P the partition associated
to g� Recall that each element of �rN is in �c�N and also GNf is in �c�N � Therefore� we
have

VQ�GNf� � VQ�g� � VQ�GNf � g�

� ��VQ�f� �
�p
�
��N����kGNf � gkL��Q�

� ��VQ�f� � �
p
N����kf � gkL��Q� � kf � GNfkL��Q��

� ��� � �
p
���

p
� � C��VQ�f��

where we have used Theorem ��� to estimate VQ�g� and the inverse estimate ����� for �cN
as well as the direct estimates ����� and ���� in the estimate of VQ�GNf � g�� �
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Remark 
�� The stability of the Haar thresholding is a quite surprising result since the
operation of discarding coe�cients is in general not uniformly stable in BV �i�e� stable
independently of the set of coe�cients which is discarded�� Also in the proof of this result�
we have made use of our approximation results for �rN � a more direct proof of this stability
is still to be found� Note that we also have used decompositions into rings to prove that
the Haar coe�cients of a BV function are in weak ��� leaving open the possibility of a
more direct proof�

Theorem 
��� For each N � �� and each f � L��Q�� we have

����� kf � GNfkL��Q� �N����VQ�GNf� � C�K�f�N������

with C� 
 ���
p
�p

� ��C �C� with C the constant of Theorem ��	 and C� the constant

of Theorem 
���

Proof� Let g be any function in BV�Q�� Since GNf is the best N term approximation to
f � we have

kf � GNfkL��Q� � kf � GNgkL��Q�
� kf � gkL��Q� � kg � GNgkL��Q�
� kf � gkL��Q� � CN

����VQ�g��

where the last inequality uses Theorem ���� The function GNf � GNg is in �c�N � We can
therefore use the Bernstein inequality ����� and Theorem ��� to obtain

N���� VQ�GNf� � N�����VQ�GNf �GNg� � VQ�GNg��

� ��
p
p
�
kGNf � GNgkL��Q� � C�N

����VQ�g�

� ��
p
p

�
kf � GNgkL��Q� � C�N

���� VQ�g�

� ��
p
p

�
kf � gkL��Q� � �

��
p
p

�
C � C��N

���� VQ�g��

Combining these two estimates� we obtain

����� kf � GNfkL��Q� �N����VQ�GNf� � C��kf � gkL��Q� �N����VQ�g���

Taking an in	mum over all g � BV�Q� gives ������ �

Our next result concerns the minimization of the U�functional� i�e� problem ������ As
in the case of the Besov space B�

��L��� a thresholding procedure� now in the Haar system�
yields the approximate minimizer�

Theorem 
��� For each � � �� and each f � L��Q�� we have

����� kf �H�fk�L��Q� � �VQ�H��f�� � C
U�f� ���



��

with C
 
 C� � ��C�
� � �C� �  and C� the constant of Theorem ���� C� the constant of

Theorem ��	 and C� the constant of Theorem 
���

Proof� Let g be any function in BV�Q�� We 	rst remark that we have

����� kf �H�fk�L��Q� � kf �H��gk�L��Q��

Indeed� if the coe�cient cI�f�H�f� 
 hf�H�f�HI i is non zero� then necessarily jcI�f�j � �
and cI�f �H�f� 
 cI�f�� For this coe�cient� we either have jcI�g�j � �� in which case

����� cI�f �H�f� 
 cI�f� 
 cI�f �H��g��

or jcI�g�j � �� in which case

����� jcI�f �H��g�j 
 jcI�f� � cI�g�j � � � jcI�f �H�f��j�

In all cases the coe�cients of f �H��g dominate those of f �H�f � so that ����� holds�
We thus have

������
kf �H�fk�L��Q� � kf � gk�L��Q� � kg �H��gk�L��Q�

� kf � gk�L��Q� � �C�
��VQ�g��

where we have used ����� of Theorem ����
We now estimate the variation of H�f as follows� using Theorem ���� we obtain

������
VQ�H�f� � VQ�H�f �H�g� � VQ�H�g�

� VQ�H�f �H�g� � C�VQ�g��

We are left with estimating the variation of H�f �H�g� For this� we write

����� H�f �H�g 
 H��H�f �H�g� � �H��H�f �H�g��

where for a function h� �H�h �
 h�H�h is the part of the Haar expansion of h corresponding
to the coe�cients which satisfy jcI�h�j � �� Using the inverse estimate ����� of Remark
��� and then ������� we have

VQ�H��H�f �H�g�� � � ���kH�f �H�gk�L��Q� � �� ����kH�f � fk�L��Q� � kf �H�gk�L��Q��
� �� ����kf � gk�L��Q� � �C�

��VQ�g� � kf � gk�L��Q� � kg �H�gk�L��Q��
� �� �����kf � gk�L��Q� � ��C��

��VQ�g���

where the last inequality again uses ����� of Theorem ����

It remains to estimate the variation of �H��H�f � H�g�� For this� we remark that if
� � jcI�H�f � H�g�j � �� then necessarily jcI�g�j � �� In other words� if we denote by

Ng��� the number of coe�cients of g above the threshold �� we see that �H��H�f �H�g� has
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at most Ng��� non�zero coe�cients� We can then use the inverse estimate ����� of Theorem
��� to obtain

������ VQ� �H��H�f �H�g�� � ��Ng����
���kH�f �H�gkL��Q��

"From Theorem ��� we have the estimate

������ Ng��� � C��
��VQ�g��

Combined with ������� this gives

�VQ� �H��H�f �H�g�� � ���C��
��VQ�g��

���kH�f �H�gkL��Q�
� ���C�VQ�g� � ���kH�f �H�gk�L��Q��
� �C��VQ�g� � �kf �H�fk�L��Q� � �kf �H�gk�L��Q�
� �C��VQ�g� � ��kf � gk�L��Q� � �C�

��VQ�g� � ��kf � gk�L��Q� � ��kg �H�gk�L��Q�
� �C��VQ�g� � �kf � gk�L��Q� � �C�

��VQ�g� � ��C�
��VQ�g�

� �kf � gk�L��Q� � ��C� � ��C�
� ��VQ�g��

where we have used ������ and ����� of Theorem ����
Combining all our estimates we obtain

������ kf �H�fk�L��Q� � �VQ�H��f�� � ��kf � gk�L��Q� � �C� � ���C�
� � �C���VQ�g��

which gives ����� by taking the in	mum over all g � BV� �

��� Interpolation spaces between L� and BV�
As a by product of our results� we shall obtain several results concerning interpolation

spaces between L��Q� and BV�Q�� For each � � � � � and � � q � � let A
q �L��Q��

denote the set of functions f � L��Q� such that

������ jf jA�
q �L��Q��

�
 k�N�N �f��k��q �Z� � �
where �N �f� 
 infg��N kf � gkL��Q�� �N is any of the three families �wN � �

r
N or �cN � and

with ��q the �q norm with respect to Haar measure�

k�an�k��q �

�
�
P�

n�� janjq �n���q � � � q �
supn�� janj� q 
�

Then� it follows from the Jackson and Bernstein estimates� which were proved through�
out the paper for these di�erent families of approximation spaces� that

����� A
q �L��Q�� 
 �L��Q��BV�Q���q � � � � � �� � � q � 

with equivalent norms� where �L��Q��BV�Q���q are the real interpolation spaces for the
pair �L��Q��BV�Q�� �see �DL� Chapter �� for the de	nition of interpolation spaces and
for the general mechanism relating these with approximation spaces� through Jackson and
Bernstein estimates��
Moreover� it was shown in �DP� that

������ A
q �L��Q�� 
 �L��Q�� B

�
� �L��Q����q �

in the case of the particular family �cN �
We thus obtain the following corollary to our results� where the second statement ex�

ploits the known interpolation results for Besov spaces �see �T� or �DP����



��

Corollary ����� We have

������ �L��Q��BV�Q���q 
 �L��Q�� B
�
� �L��Q����q � � � � � �� � � q �

and in particular

������ �L��Q��BV�Q���q 
 Bq
�Lq�Q��� � � � � �� ��q 
 �� � ���
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